
L.Fine Formatting Highly Detailed Reports 1

Formatting Highly Detailed Reports: Eye-Friendly, Insight-Facilitating

Lisa Fine, United BioSource Corporation

Introduction
Consider a highly detailed report that is overwhelming with numbers, page after page. The results in this type of

report can be very difficult for the reader to decipher. However, often, just slight changes in style and

formatting can transform a report crammed with details into one in which the reader can identify important

items and make sense of the results.

Example: Format National Sales Report
This example demonstrates how to modify a national sales report that displays quarterly sales by Region, Store

Number, and Branch Number. Figures 2.1 and 2.2 show BEFORE and AFTER versions of the same report after

implementing various ODS and PROC REPORT options. Almost all report enhancements are made using

PROC REPORT along with ODS RTF enhancements. The only pre-processing of data in this example is to add

a variable named BLANK that will be used to add empty columns in the REPORT procedure.

Figure 2.1 BEFORE Formatting

L.Fine Formatting Highly Detailed Reports 2

Figure 2.2 AFTER Formatting

L.Fine Formatting Highly Detailed Reports 3

Overall Goals for Formatting the National Sales Report
The overall goals for formatting highly detailed reports are those that make the report easier on the eye.

The overall goals for this paper include:

• Adding white space between rows and columns.

• Making key items stand out with bold font, borders, underlines, and color.

• Inserting symbols, in this case arrows for quick reference.

Key Steps

Figure 2.1, the “BEFORE” version, is transformed into Figure 2.2, the “AFTER” version, by making the

following modifications:

1 Region is displayed as a line above each report page, rather than as a column on each page.

2 Store #s and Branch #s are displayed in bold blue font (font color (or text color) is called

“foreground” in the SAS® code).

3 Arrows are displayed after each 2011 Sales column to provide a quick reference to whether sales

increased or decreased, and open circles are displayed to indicate that sales stayed the same from the

previous quarter.

 Color is applied to the arrows to further highlight increases (green), decreases (red), and no

change (black).

4 A spanning header, “2011 Sales” is added and bottom borders and underlines are added to header

cells.

5 Summary lines, which show total Store sales, are brought out by applying blue font and adding a

blank line after each summary line, before the start of each new store number.

6 Blank columns are added after the following columns: “Branch #”, “2010 Sales Quarter 4”, and after

“Vs Q4”.

Each modification is explained in a later section of this paper.

Source Data
There is one source data set, Sales, which contains quarterly sales totals by Region, Branch Number, and Store

Number. Table 2.1 displays the variable information for SALES. Table 2.2 contains a sample of the Sales data

so the user can visualize the structure of the data set.

L.Fine Formatting Highly Detailed Reports 4

Table 2.1 Sales Variable Information

Variables in Creation Order

Variable Type Len Label

1 REGION Char 8 Region

2 STORE Char 8 Store #

3 BRANCH Num 8 Branch #

4 QTR4_2010 Num 8 Quarter 4 2010 Sales

5 QTR1 Num 8 Quarter 1 2011 Sales

6 QTR2 Num 8 Quarter 2 2011 Sales

Table 2.2 Sample Sales Data

REGION STORE BRANCH QTR4_2010 QTR1 QTR2

East 1001 1 43564 42555 47000

East 1001 2 47235 47523 48102

East 1001 3 50244 45999 46582

East 1001 4 37665 37778 39624

East 1002 1 50000 50248 49335

East 1002 2 48045 46822 48000

ODS Style Template Used
The same ODS Style template, named “RSTYLERTF” was used to produce both Figure 2.1 and Figure 2.2

reports. This is a user-created template, meaning YOU need to create it with PROC TEMPLATE. Note that the

template RSTYLERTF is later referenced in the ODS statement prior to running the REPORT procedure (see

Program 2.1’s ODS statement starting with, “ods rtf style=RSTYLERTF…” in the Programs Used section).

To reproduce Figure 2.1 or Figure 2.2 you will need to to run the PROC TEMPLATE Program shown in

PROGRAMS USED section.

Programs Used
The PROC TEMPLATE program is run first to create the ODS style template, which provides the base

formatting for both Figure 2.1 and Figure 2.2.

The “Before Formatting” program (referred to as Program 2.1 for the remainder of this paper) was used to

create Figure 2.1. Both the PROC TEMPLATE program and Progam 2.1 are displayed in this paper.

The final program, called Format.sas, was used to create Figure 2.2. Format.sas can be downloaded from the

author’s web page at http://support.sas.com/publishing/authors/fine.html.

This paper was written based on SAS 9.3. The author’s web page provides some SAS9.1.3 code workarounds

for the examples that use features from later SAS releases.

L.Fine Formatting Highly Detailed Reports 5

PROC TEMPLATE Program to Create New Style Template
We create a new ODS style template because we want to slightly alter the default RTF ODS style template prior

to producing the reports. We name the new template RSTYLERTF with the DEFINE STYLE statement. The

PARENT= statement specifies that RSTYLERTF should inherit the style elements from STYLES.RTF.

We make the desired style element modifications for our new template via CLASS statements. Specifically, we

remove some of the table and cell borders, thicken the table’s top border, remove the background color from the

header cell, and modify the page margins.

** PROC Template Program;

proc template;

 define style rstyleRTF;

 parent=styles.rtf;

 class table/

 rules=none

 frame=above

 borderwidth=1.5 pt

 cellpadding=0;

 class Header/

 background=_undef_;

 class body/

 bottommargin = .75 in

 topmargin = 1.25 in

 rightmargin = .75 in

 leftmargin = .75 in;

end;

run;

The RSTYLERTF template will inherit the style elements from the PARENT template (STYLES.RTF) except
the table, header and body elements specified by the CLASS statements.

Table 2.3 demonstrates some of the PROC TEMPLATE changes.

L.Fine Formatting Highly Detailed Reports 6

Table 2.3 PROC TEMPLATE Table and Header Changes

RTF DEFAULT

 TABLE Change:

Rules=None

 TABLE Change:

Frame=Above and

Borderwidth=1.5 pt

Region Region Region

East East East

West West West

North North North

South South South

TABLE Change:

Cellpadding=0

 HEADER Change:

Background=_undef_

Region Region

East East

West West

North North

South South

 This shows the default RTF ODS Style Template (the PARENT of the new ODS Style Template,

RSTYLERTF).

 Rules=None requests that there are no border lines between table cells.

 Only the above portion of the table frame is requested. This above border is widened (made thicker) to 1.5

pt.

 The cell padding is set to 0 to remove the padding around the text within the cells. This has the effect of

reducing the row heights.

 The background of the “Region” header is specified as undefined to remove the default background color.

Recommended books for more information on PROC TEMPLATE and ODS Style Templates include:

Haworth, Lauren E., Zender Cynthia L., and Burlew, Michelle M. 2009. Output Delivery System: The Basics

and Beyond. Cary, NC: SAS Institute Inc.

Smith, Kevin D. 2013. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Cary, NC: SAS Institute Inc.

The “Before Formatting” Program (Program 2.1)
Figure 2.1, the “BEFORE” figure was generated from the following program, after running the PROC

TEMPLATE program.

** The “Before Formatting” Program (Program 2.1);

** Get Data;

data sales;

L.Fine Formatting Highly Detailed Reports 7

 set sasuser.sales;

run;

** Produce the Report;

ods _all_ close;

ods escapechar = "^";

options nodate nonumber orientation=portrait;

ods rtf style=RSTYLERTF file=“C:\client\projectABC\UnFmt.rtf”;

proc report data=sales nowd split=“|” center missing

 style(column)=[just=c cellwidth=.8 in] out=prefmt;

column REGION STORE BRANCH QTR4_2010 QTR1 QTR2;

 define REGION / order "Region" style(column)=[cellwidth=.65 in];

 define STORE / order "Store #" style(column)=[cellwidth=.65 in];

 define BRANCH / order "Branch #" style(column)=[cellwidth=.7 in];

 define QTR4_2010 / "Quarter 4 2010" format=dollar10.;

 define QTR1 / "Quarter 1 2011" format=dollar10.;

 define QTR2 / "Quarter 2 2011" format=dollar10.;

 ** Sum Sales per store;

 break after STORE / summarize suppress;

run;

ods rtf close;

ods html;

title;

footnote;

For reference, Table 2.4 shows a partial print of the PROC REPORT output data set created in the PROC

REPORT statement via “OUT=PREFMT. You can see that an extra column named _BREAK_ was produced.

This automatic temporary variable would be created regardless of whether we had the BREAK statement,

however the _BREAK_ column would contain only blank values.

The “BREAK AFTER STORE /” statement by itself creates extra rows for which the value of _BREAK_ is

“STORE” and the numeric columns, QTR4_2010, QTR1, QTR2 are summed.

The addition of the SUMMARIZE option allows the summary rows to be displayed in the printed report. The

SUPPRESS option prevents the REGION and STORE values from being displayed on the summary lines of the

printed report. You can see that the REGION and STORE values do still remain in the summary lines of the

PROC REPORT data set.

L.Fine Formatting Highly Detailed Reports 8

Table 2.4 PROC REPORT Data Set “PREFMT”

REGION STORE BRANCH QTR4_2010 QTR1 QTR2 _BREAK_

East 1001 1 43564 42555 47000

East 1001 2 47235 47523 48102

East 1001 3 50244 45999 46582

East 1001 4 37665 37778 39624

East 1001 . 178708 173855 181308 STORE

East 1002 1 50000 50248 49335

East 1002 2 48045 46822 48000

East 1002 3 60023 62410 62650

East 1002 4 55000 56102 56109

East 1002 5 52345 52650 54197

East 1002 6 56444 57720 57800

East 1002 7 59721 63000 65254

East 1002 . 381578 388952 393345 STORE

East 1003 1 67443 66230 67503

East 1003 2 69903 70085 73598

East 1003 3 57900 60000 62900

East 1003 4 58989 59222 58307

East 1003 5 56112 57364 57647

East 1003 . 310347 312901 319955 STORE

East 1007 1 51008 51008 52310

East 1007 2 46733 43062 45564

East 1007 3 61228 59838 62300

East 1007 . 158969 153908 160174 STORE

East 1008 1 63328 63000 64274

East 1008 2 61377 66461 70468

East 1008 3 59821 59637 61272

East 1008 . 184526 189098 196014 STORE

Implementation: Transforming Figure 2.1 Into Figure 2.2
The remainder of the paper will add the code that transforms Figure 2.1. to Figure 2.2, one section at a time.

.

L.Fine Formatting Highly Detailed Reports 9

Displaying Region as a Line Above Each Report Page
As shown in Figure 2.3, the report displays Region as a line rather than as a report column.

Figure 2.3 - Display Region Before Report

Overview of Region Display

Displaying REGION as a line above each report page is accomplished with a BREAK statement and a

COMPUTE block. A change in REGION is the designated BREAK before which a new page should be started.

“Before” each page is the location for the COMPUTED region LINE.

Key steps for displaying a Region line above each report page include

• Specify ORDER and NOPRINT options in the DEFINE statement for REGION.

• Insert a page break before each new value of REGION using a BREAK statement.

• Via a COMPUTE block, display the region specification before each page’s report in the form

“Region: “ REGION value, and apply styles including left justification, bolded font, increased font size

and blue foreground to the line.

Code to Make the Region Display in Figure 2.3

The following additions are made to Program 2.1 to display the region as a line.

** Specify ORDER and NOPRINT Options for REGION;

define REGION / order noprint;

** Insert Page Break Before each Region;

break before REGION / page;

** Display the Region Before each Page and Apply Styles;

compute before _page_;

 line "^S={foreground=blue font_weight=bold font_size=16 pt just=left}

 Region: " REGION $20.;

endcomp;

 While REGION is a report variable specified in the column statement, the goal is to print REGION in a

line prior to the report, rather than as a column. Therefore the NOPRINT option is applied in the DEFINE

statement to prevent the column printing. The ORDER option is applied to allow for page BREAKs and

COMPUTEd lines BEFORE REGION.

 To ensure that only one region’s data appears on each page, a BREAK statement is used to start a new page

for each new value of REGION.

 After ensuring each page contains only one region, the location for lines displaying region text is specified

as “before _page_”, which translates into “Display the region above the table on each page.”

L.Fine Formatting Highly Detailed Reports 10

 Specifically, the region text should appear in the form “Region: “ Actual REGION value.

 The font weight is set to bold, the font size is increased to 16 pt, and the font color is changed from

the default black to blue, to further highlight the region being reported. The line is also left justified.

Displaying Store and Branch Column Data in Bold Blue Font
Figure 2.4 shows the application of color and bold weight to STORE and BRANCH data. The style

modifications are applied in these variables’ DEFINE statements.

Figure 2.4 – Blue Font: Store and Branch Values

Code for Store and Branch Display

The highlighted code indicates the additions to the Program 2.1 STORE and BRANCH DEFINE statements.

** Modify Foreground and Font_weight for STORE and BRANCH Data;

define STORE / order "Store #" style(column)=[cellwidth=.65 in

 foreground=blue font_weight=bold];

define BRANCH / order "Branch #" style(column)=[cellwidth=.7 in

 foreground=blue font_weight=bold];

 The columns are styled using the STYLE(COLUMN)= option, along with the CELLWIDTH=,

FOREGROUND=, and FONT_WEIGHT= attribute specifications on the respective DEFINE statements.

The CELLWIDTH= style attribute is used to define the STORE and BRANCH column sizes as .65 and .7

inches wide. The blue colored font (“foreground”) and bold font weight are applied to STORE and

BRANCH values with the FOREGROUND= and FONT_WEIGHT= specifications.

Note that the ORDER option is applied to both STORE and BRANCH (as was done for the unformatted report,

Figure 2.1).

• Applying the ORDER usage option orders the stores and branches, prevents repeated values from

being displayed and, importantly, prevents the numeric branch numbers from being assigned their

default ANALYSIS. With an ANALYSIS usage, the branch numbers would be summed by the

BREAK after the store / summarize statement.

L.Fine Formatting Highly Detailed Reports 11

How to Insert Arrows for Quick Reference to Sales Increases/Decreases
 Increases/Decreases Arrows have been inserted so the reader can quickly identify if sales increased, decreased,

or stayed the same from the previous quarter, as shown in Figure 2.5.

Figure 2.5 – Insert Arrows for Quick Reference

Overview on Arrow Insertion

In this section COMPUTE blocks are used to create new variables that represent the change in sales from

quarter to quarter. The numeric differences are converted to arrows via a format. Color and font style is then

applied to the arrows, including the summary line, via a color format used in CALL DEFINE statements. The

key steps for inserting arrows to show changes from the previous quarter’s sales include

• Create the arrow and color formats to be applied to the sales differences.

• Add the COMPUTEd variable names DIR1 and DIR2 to the COLUMN Statement.

• Apply the Wingdings font_face and arrow format in the DIR1 and DIR2 DEFINE Statements.

• Using a COMPUTE Block:

◦ Create the two difference variables DIR1 and DIR2.

̶ DIR1 represents Quarter 1 2011 sales (QTR1) minus Quarter 4 2010 sales (QTR4_2010).

̶ DIR2 represents Quarter 2 2011sales (QTR2) minus Quarter 1 2011 sales (QTR1).

◦ Conditionally apply color to increases, decreases, and no change in CALL DEFINE statements so

the summary line arrows receive the proper color application.

Code for Arrow Insertion

The following additions are made to Program 2.1 to create DIR1 and DIR2 and style these as symbols.

** Create Color and Arrow Formats;

proc format;

 value arrow

 low - < 0 = “EA”x

 0 = “A2”x

 0 <- high = “E9”x;

 value color

 low - < 0 = red

 0 = black

 0 <- high = green;

run;

L.Fine Formatting Highly Detailed Reports 12

** Add Computed Variable Names DIR1 and DIR2 to the COLUMN Statement;

proc report data=sales nowd split=“|” center missing

 style(column)=[just=c cellwidth=.8 in];

 columns REGION STORE BRANCH QTR4_2010 QTR1 DIR1 QTR2 DIR2;

** Add DIR1 and DIR2 DEFINE Statements. Apply Arrow Format and Wingdings

 Font;

 define DIR1 / " " computed format=arrow.

 style(column)=[cellwidth=.6 in font_face=wingdings];

 define DIR2 / " " computed format=arrow.

 style(column)=[cellwidth=.6 in font_face=wingdings];

** Add Compute Blocks to Derive Difference Variables DIR1 And DIR2 and Style

 with Color. Format, including Summary Lines;

compute DIR1;

 DIR1=QTR1.sum-QTR4_2010.sum;

 call define(“DIR1”,”style”,”style={foreground=color.}”);

endcomp;

compute DIR2;

 dir2=QTR2.sum-QTR1.sum;

 call define(“DIR2”,”style”,”style={foreground=color.}”);

endcomp;

 Two formats are created. The arrow format contains ASCII hexadecimal (hex) codes (“EA”,”E9”,”A2”)

that will be rendered as arrows and circles once Wingdings font is applied in the DEFINE statements for

the sales difference variables DIR1 and DIR2. Table 2.5 displays the Hex codes, and how they will be

rendered in the RTF output after Wingdings font is applied.

Table 2.5 Arrow Format Specifying Hex Code and Corresponding Wingdings Representation

 Hex Code Wingdings

 Representation

A2

E9

EA

 For other example conversions of Hex Code to Wingdings go to

http://dmcritchie.mvps.org/rexx/htm/fonts.htm

 The COLOR format will be used to apply either Red, Black, or Green to DIR1 and DIR2 in the CALL

DEFINE statements.

 The computed variables are added to the COLUMN statement since they must be report variables to show

as columns.

 While the arrow format could have been applied in the conditional CALL DEFINE blocks, they are applied

in the DEFINE statements since all rows of the difference variables use the arrow format.

 Based on the arrow format, negative sales differences are applied the “EA”x value (down arrow), 0s

are applied the “A2”x value (open circle), and positive difference are applied the “E9”x value (up

arrow). If the format is not applied windings symbols other than the desired ones will be displayed in

the report.

 Per COMPUTE block rules, the analysis variables used to derive the computed variables are referenced by

their compound names (VARIABLE.statistic) such as QTR1.sum and QTR4_2010.sum (sum is the default

statistic for analysis variables).

 The CALL DEFINE statement is used to conditionally apply font color to the arrows and open circle using

the COLOR format. The color format was applied within the COMPUTE block CALL DEFINE statement

http://dmcritchie.mvps.org/rexx/htm/fonts.htm

L.Fine Formatting Highly Detailed Reports 13

(versus in DIR1 and DIR2 DEFINE statements), so it would be applied to the summary line arrows as well

(otherwise the summary line arrows display in blue colored font).

 Increases and decreases use Wingdings font (to obtain the arrow symbol) and green versus red

foregrounds respectively. For no change (e.g. DIR1 or DIR2 = 0), a black open circle is shown.

How to Add Spanning Headers, Bottom Cell Borders and Underlines
Figure 2.6 shows the addition of the “2011 Sales” header that spans over the 2011 quarterly sales columns and

their corresponding arrows columns. Bottom cell borders and underlines are also added to help clarify sections

of the report.

Figure 2.6 – Bottom Cell Borders and Text Underlines

Highlights on Adding Spanning Headers, Borders and Underlines

The Sales column headers are created in the COLUMN statement (versus DEFINE statements) to ensure

1. to ability to create spanning headers, and

2. these headers are displayed a level above the “Store #” and “Branch #” headers.

This section makes use of border control to add header bottom borders, and text decoration functionality to add

header underlines. The example below shows the difference between a bottom border and a text underline.

Comparison of Bottom Border and Text Underline

Bottom borders are added by inserting the inline formatting function borderbottomwidth as shown below.

“^{style [borderbottomwidth=1pt] header text}”

 Text Underlines are added by inserting the inline formatting function textdecoration as shown below

“^S={textdecoration=underline} header text”

L.Fine Formatting Highly Detailed Reports 14

Specific steps in creating spanning headers include

• In the COLUMN statement, add bottom cell borders and create a spanning header, “2011 Sales” to

span over relevant columns.

• Add “Store #” and “Branch #” headers via the DEFINE statements so they are displayed a level below

the sales headers. For these headers, text underlining is used rather than applying bottom borders to the

table cells.

• Set the Sales variables’ header text to null in the DEFINE statements since these headers are being

labeled in the COLUMN statements.

Code for Adding Spanning Headers, Borders and Underlines

The following additions are made to the Program 2.1 COLUMN and DEFINE statements to modify the column

headers.

COLUMN region store branch

** Add Bottom Cell Borders And Create A Spanning Header;

 ("2010 Sales|^{style [borderbottomwidth=1 pt]Quarter 4}" QTR4_2010)

 ("^{style [borderbottomwidth=1 pt] 2011 Sales}"

 ("^{style [borderbottomwidth=1 pt] Quarter 1}" QTR1)

 ("^{style [borderbottomwidth=1 pt] Vs. Q4}" dir1)

 ("^{style [borderbottomwidth=1 pt] Quarter 2}" QTR2)

 ("^{style [borderbottomwidth=1 pt] Vs. Q1}" dir2)

);

** Underline Store # and Branch # Headers;

define store / order "^S={textdecoration=underline}Store #"

 style(column)=[cellwidth=.65 in

 foreground=blue font_weight=bold];

define branch / order "^S={textdecoration=underline}Branch #"

 style(column)=[cellwidth=.7 in

 foreground=blue font_weight=bold];

** Sales Column Headers are created in the COLUMN statement and set to null

in DEFINE statements so variable names are not displayed;

define QTR4_2010 / "" format=dollar10.;

define QTR1 / "" format=dollar10.;

define DIR1 / computed "" style(column)=[font_face=wingdings

 cellwidth=.6 in] format=arrow.;

define QTR2 / "" format=dollar10.;

define DIR2 / computed "" style(column)=[font_face=wingdings

 cellwidth=.6 in] format=arrow.;

 2010 Sales Quarter 4 is a standalone item that is given a cell bottom border.

 A spanning header “2011 Sales” with a bottom border is created to encompass each 2011 Sales and each

Increase/Decrease column, “Quarter 1”, “Vs. Q4”, “Quarter 2”, and “Vs. Q1”.

 The "^{style [borderbottomwidth=1 pt] 2011 Sales}" code covers all columns within the outermost

begin and end parentheses (i.e. encompasses all of the “” boxed code section).

 Within this spanning header, each individual 2011 Sales header is given a bottom border as well.

 The underlines for Store # and Branch # headers are applied by inserting the textdecoration inline

formatting within the headers in the DEFINE statements. These headers could have been created in the

COLUMN statement but the preference for this report is to display these headers below the Sales header

levels.

 Sales Column Headers are specified in the COLUMN statement and are therefore set to null (see gray

highlighted code) in the DEFINE statements so the variable names are not displayed.

L.Fine Formatting Highly Detailed Reports 15

Adding Blank Columns to Make the Report Easier to Read
Figure 2.7 presents the report with added blank columns where white space is desired.

Figure 2.7 – Showing Added Blank Columns

Overview of Adding Blank Columns

A DATA step is used to derive the new variable BLANK, which is set to null and specified as a PROC

REPORT COLUMN variable in places blank columns are desired.

• Create “BLANK” variable in data set.

• Add the new variable to the COLUMN statement in places for which a blank column is desired.

• Specify null label and the desired cell width for each blank column in the DEFINE statement.

Code for Adding Blank Columns
** Add “BLANK” variable to the SALES data set;

data sales;

 set sales;

 blank = ““;

run;

** Add BLANK to COLUMN Statement in Desired Locations;

COLUMN region store branch BLANK

** Add Bottom Cell Borders And Create A Spanning Header;

 ("2010 Sales|^{style [borderbottomwidth=1 pt]Quarter 4}" QTR4_2010) BLANK

 ("^{style [borderbottomwidth=1pt] 2011 Sales}"

 ("^{style [borderbottomwidth=1pt] Quarter 1}" QTR1)

 ("^{style [borderbottomwidth=1pt] Vs. Q4}" dir1) BLANK

 ("^{style [borderbottomwidth=1pt] Quarter 2}" QTR2)

 ("^{style [borderbottomwidth=1pt] Vs. Q1}" dir2)

);

** Add BLANK DEFINE statement with null header and desired column width;

define BLANK / "" style(column)=[cellwidth=.15 in];

 BLANK variable is added to the dataset to allow us to insert white space in the report where extra blank

columns are desired.

 The COLUMN statement determines the column order in the report. Therefore the BLANK variable is

listed each time a blank column is desired within the COLUMN variable list. We use the BLANK variable

three times in this report.

 If the labels are not set to null the heading “BLANK” will appear as a column header in the report. If the

cell width is not set the default column width may produce a blank column wider/narrower than desired.

L.Fine Formatting Highly Detailed Reports 16

Note that the BLANK columns could have been created via COMPUTE blocks. For example, we could have

used the following code to create three new report variables.

compute BLANK1 / char length=2;

 BLANK1 = “ “;

endcomp;

compute BLANK2 / char length=2;

 BLANK2= “ “;

endcomp;

compute BLANK3 / char length=2;

 BLANK3 = “ “;

endcomp;

We would then reference the variable names BLANK1, BLANK2, and BLANK3 in the COLUMN statement,

and use three DEFINE statements to apply null headers and desired cell widths.

Rather, for this example we took advantage of the automatic creation of aliases for the input data set variable

BLANK that occurred because we referenced it more than once in the COLUMN statement. We can see that

this automatic creation occurred by adding the LIST option to the PROC REPORT statement. (LIST writes

PROC REPORT code to the log, including some of the defaults we did not specify).

Using the LIST option in the PROC REPORT statement, the SAS log shows us that aliases _A1 and _A2 were

created for BLANK.

PROC REPORT DATA=WORK.SALES LS=98 PS=55 SPLIT="|" CENTER MISSING ;

COLUMN (REGION STORE BRANCH

 blank

 ("2010 Sales|^{style [borderbottomwidth=1 pt]Quarter 4}" qtr4_2010)

 blank=_A1

 ("^{style [borderbottomwidth=1pt] 2011 Sales}"

 ("^{style [borderbottomwidth=1pt] Quarter 1}" qtr1)

 ("^{style [borderbottomwidth=1pt] Vs. Q4}"dir1)

 blank=_A2

 ("^{style [borderbottomwidth=1pt] Quarter 2}" qtr2)

 ("^{style [borderbottomwidth=1pt] Vs. Q1}" dir2)

));

Also note, using this method for obtaining blank columns only required one DEFINE statement for the variable

BLANK.

L.Fine Formatting Highly Detailed Reports 17

Style / Add Blank Line After each Summary Line
As a final step, summary lines are distinguished by adding color and white space as shown in Figure 2.8.

Figure 2.8 Style Summary Lines

Highlights on Styling Summary Line and Adding Blank Line

Key steps to highlighting sales totals include

• Summarize with a BREAK statement (this was done for the unformatted report as well). In this

example we apply bold blue font to the summary lines.

• Further highlight the totals by adding a blank line after the last value of each Store #.

Code for Styling Summary Line and Adding Blank Line
** Apply Bold Blue Font to Summary Lines;

break after STORE / summarize suppress style(summary)=[font_weight=bold

foreground=blue];

** Add Blank Line after each store # section ;

compute after STORE;

 line “ “;

endcomp;

 Specify that PROC REPORT summarize the analysis variables after STORE (i.e. each store number).

BRANCH, a numeric variable would be an analysis variable by default, and therefore summarized, but the

ORDER option overrides this.

We specify desired styles for the summary line with the style(summary)= option.

 Via a COMPUTE block add a blank line after each STORE.

L.Fine Formatting Highly Detailed Reports 18

Recap
The paper demonstrated ways to turn a highly detailed report (Figure 2.1) into a manageable readable format

(Figure 2.2) simply by applying various ODS and PROC REPORT features. Table 2.6 recaps the enhancements

made to Figure 2.2. and the main programming modifications that were required.

L.Fine Formatting Highly Detailed Reports 19

Table 2.6 Recap

Enhancements Main Programming Modifications

 Region was displayed as a line above each

report page, rather than as a column on each

page.

Specifying NOPRINT in the REGION DEFINE statement; BREAK

Statement to create page break (before REGION / page), COMPUTE

Block to create a Region line (before _page_).

 Store #s and Branch #s were displayed in bold

blue font (“foreground”).

Styled with Style(column) = options in DEFINE statements.

 Arrows were displayed after each 2011 Sales

column to provide a quick reference to

whether sales increased, decreased, or stayed

the same from the previous quarter.

COMPUTED variables to derive quarterly sales differences; Formats

were used to apply symbol type and color to the difference variables.

Color was applied in CALL DEFINE statements to override the blue

colored font of Summary Line symbols.

 A spanning header, “2011 Sales” was created

and bottom borders and underlines were added

to header cells.

COLUMN statement used to create spanning and nested headers with

the use of parentheses. Inline formatting style functions were inserted

to add borders and underlines.

 Summary lines, which show total Store sales,

were brought out by applying blue font color

and adding a blank line after each summary

line, before the start of each new store number.

Summary lines were styled with the style(summary)= option; A

COMPUTE block was used to add a blank line after each STORE.

 Blank columns were added after the following

columns: Branch #, 2010 Sales Quarter 4, and

Vs Q4.

A DATA step was used to create a new variable, BLANK. This was

reported in desired locations by adding BLANK to the PROC

REPORT COLUMN statement where blanks were desired. The

desired cellwidth and a null header were applied in a DEFINE

statement.

Figure 2.1 BEFORE Formatting Figure 2.2 AFTER Formatting

L.Fine Formatting Highly Detailed Reports 20

References
Fine, Lisa. 2013. PROC REPORT by Example: Techniques for Building Professional Reports Using SAS.

Cary, NC: SAS Institute Inc.

(Many excellent sources went into writing PROC REPORT by Example. These sources are cited in the book's

"References" section)

Acknowledgments
What started out as a paper ended up becoming a book thanks to the encouragement of Michael Raithel and

Cynthia Zender. The content and writing was then greatly improved by insightful feedback from my book

reviewers, Allison Booth, Robin Crumpton, Mei Du, Jane Eslinger, Tim Hunter, Bari Lawhorn, Russell Lavery,

and Matt Nizol.

Contact Information
Your comments and questions are valued and encouraged. Contact the author:

Lisa Fine

United BioSource Corporation

E-mail: Lisa.Fine@UBC.com

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are

trademarks of their respective companies.

